
14 Years of Developing nCine
An Open-Source 2D Game Framework

Angelo "encelo" Theodorou
/dev/games, Rome, June 5-6, 2025

https://ncine.github.io

https://devgames.org/
https://github.com/encelo/nCine_14Years_Presentation
https://github.com/nCine/nCine
https://ncine.github.io/
https://twitter.com/nCine2d
https://discord.com/invite/495ab6Y
https://ncine.github.io/

What Is the nCine? ⚙️
A portmanteau of "Encelo" and "engine" 😅

A cross-platform 2D framework for games, tools, and prototypes

Supports PC (Linux, Windows, macOS), Android, Raspberry Pi, and the web (Emscripten)

Provided as a static/dynamic library with clean API and callbacks

Written in C++11, with Lua bindings

Strong emphasis on performance and optimization

Source available on GitHub under the MIT license

Based on a transformation scene graph and a node hierachy (no components)

A learning opportunity, both for me and for its users

2 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 A Selection of Screenshots
A few examples of what has been built with or on top of the nCine

SpookyGhost, a procedural sprite animation tool ncJump, a platform game with Box2D physics by Fahien

3 / 77

 /dev/games/2025

https://github.com/SpookyGhost2D/SpookyGhost
https://github.com/Fahien/ncJump
https://github.com/Fahien
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

Why Yet Another Custom Engine? 🤔
Job frustration was the original, powerful source of motivation

Today, I keep myself motivated by working on it a bit every day

I wanted to learn, to become a better programmer, to reach my career goals

Tackle low-level topics like C++ templates, custom allocators, multi-threading

Build a strong codebase for my future 3D learning demos (and ditch old frameworks)

Today, I want to see others using it to build interesting projects

I would feel immensely proud if people created something beautiful with it

We need more custom engines to fight innovation stagnation!

nCine: a world with custom in-house engines is possible

Unreleased ncShadowMapping demo My custom engines presentation on a faulty projector

4 / 77

 /dev/games/2025

https://encelo.github.io/CustomEnginesPresentation
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

Lines of Code
/---\
Language files blank comment code
C++ 378 17127 3298 83956
C/C++ Header 343 7422 4277 30650
CMake 44 716 387 5676
YAML 7 176 27 923
XML 2 0 1 660
Lua 10 137 5 600
GLSL 21 67 0 340
Markdown 1 18 0 87
Gradle 2 1 0 23
INI 1 2 0 10

SUM: 809 25666 7995 122925
\---/

The main nCine repository, counting only the master branch and excluding external projects as of June 4, 2025.

Over 25,000 lines are dedicated to unit tests. 😱

5 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

How It All Began
I was born in 1983 and got an Amiga 500 in 1991 👴

The Amiga had amazing games, but also a vibrant demoscene! ❤️

The pursuit of beauty and wonder through mastery of the machine 🧙‍♂️

In 2000, I jumped on the open source and *nix train (still on the Amiga) 🚂

That's me in the early '90s, playing on my first Amiga

6 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2011 - Once Upon a Time
In 2010 I joined a small indie company in Italy 🇮🇹

I daydreamed about graphics and engine programming…

…but what I actually did all day was GUI work for games 😞

I took destiny into my own hands! 💪

First "encine2d" commit on 19 June 2011 🗓️ (6bf318de)

Coming from CVS and SVN, I initially chose Mercurial and hosted on BitBucket

I deliberately neglected rendering to focus on everything else that makes an "engine"

I wrote "apptests" to stress-test the API as it evolved

7 / 77

 /dev/games/2025

https://github.com/nCine/nCine/commit/6bf318de
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2011 - Small Screen, Big Dreams

My working environment in 2011: an 11.6" Lenovo IdeaPad S205

8 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2011 - Laying The Foundations
Developed exclusively on Arch Linux using Qt Creator, CMake and GCC

Doxygen documentation generated automatically from inline code comments

Android support added just one month after the project started 📱

Performance oriented from day one:

XNA-inspired explicit sprite batcher: Begin() / Draw() / End()

Texture atlas support to reduce OpenGL binding calls and optimize batching

Template-based custom array and list containers

Line and stacked histogram plotters for detailed time profiling

Support for block-compressed GPU texture formats (ETC1 in pkm, ATITC in DDS)

Scenegraph implementation with sprites, particle systems, and text nodes (using bitmap fonts)

Original histogram plots apptest_particles Droid Sans bitmap font

9 / 77

 /dev/games/2025

https://ncine.github.io/docs/master/
https://github.com/nCine/nCine/blob/master/tests/apptest_particles.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2012 - Expanding Horizons
I moved to Cambridge to work for ARM 🇬🇧 (🗓️ Dec)

nCine was still in early development, but caught attention during my interview

Asked and got approval from my manager to release it open source in the future

Developer relations with Epic Games, Unity, Frostbite, Gameloft, and more

Presented at GDC, Unite, GameLab, and more

Added an OpenAL based sound system 🔊 (b8c23c54, 🗓️ Feb)

Support for audio buffers (WAV) for effects and streams (Ogg Vorbis) for music playback

Implemented a new file interface to support Android assets

Added PNG and WebP texture support using libpng and libwebp

Introduced GLFW as an alternative to the SDL1 desktop backend

Designed a threading and synchronization API with POSIX and WinAPI primitives

10 / 77

 /dev/games/2025

https://github.com/nCine/nCine/commit/b8c23c54
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2013 - Android as a Console
I always wanted to be a console programmer

Android was considered a console-like target for the nCine

Working at ARM surrounded me with Android devices

Set-top boxes running Android TV were becoming popular

I received a Google ADT-1 as a gift at Unite 2014 in Seattle 🎁

OUYA (2013) Google ADT-1 (2014) Nvidia Shield (2015)

11 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2013 - Quiet Progress
Implemented high-precision monotonic clock (POSIX, Mach, Windows) (419c68f1, 🗓️ Oct)

Unaffected by system time changes, it increments a counter continuously from system boot

Added MIP mapping support to improve rendering quality and performance

Especially important on mobile devices to reduce GPU memory bandwidth and save battery 🔋

Updated GLFW desktop backend to GLFW 3.0

System backends abstract the specifics and provide a generic API for window handling and inputs

Backend API proved flexible, enabling ports for SDL2, GLFW3, Qt5, and Android

A user has made ports for UWP (Xbox) and homebrew Switch without issues

Additions/Deletions Over Time

12 / 77

 /dev/games/2025

https://github.com/nCine/nCine/commit/419c68f1
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2013 - Monotonic Clocks

Three different backends, each one with a fallback (src/base/Clock.cpp 🔗)

1 #if defined(_WIN32)

2 if (hasPerfCounter_) QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&counter));
3 else counter = GetTickCount();
4 #elif defined(__APPLE__)

5 #if __MAC_10_12

6 counter = clock_gettime_nsec_np(CLOCK_MONOTONIC_RAW);
7 #else

8 counter = mach_absolute_time();
9 #endif

10 #else

11 if (hasMonotonicClock_)

12 {

13 struct timespec now;
14 clock_gettime(CLOCK_MONOTONIC, &now);
15 counter = static_cast<uint64_t>(now.tv_sec) * frequency_ + static_cast<uint64_t>(now.tv_nsec);
16 }

17 else

18 {

19 struct timeval now;
20 gettimeofday(&now, nullptr);
21 counter = static_cast<uint64_t>(now.tv_sec) * frequency_ + static_cast<uint64_t>(now.tv_usec);
22 }

23 #endif

13 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/src/base/Clock.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2014 - Gamepads Support
Gamepads were essential for a console-like experience (joysticks , 11d7799a, 🗓️ Aug - Sep)

On Android, I had to use JNI to call Java from C++, ouch 🤕

Stylistic coherence with Artistic Style (codestyle , d111d9c1, 🗓️ Oct - Dec)

Moved private headers to src/include so only public API headers remain in include

Removed the nc prefix from class names in favour of the ncine namespace

Kept a prefix for interfaces (abstract classes): IAppEventHandler

Custom string class with iterator

Templated static array class with iterator

Uses stack storage, capacity is fixed (template <class T, unsigned int C>)

14 / 77

 /dev/games/2025

https://github.com/nCine/nCine/commit/11d7799a
https://astyle.sourceforge.net/
https://github.com/nCine/nCine/commit/d111d9c1
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2015 - From Hobby to Interview Material
I moved to Oxford to work as an Android Technology Programmer for Natural Motion (🗓️ Jun)

I showed some nCine code during my interview to demonstrate my C++ skills

The nCine was still not ready for showtime, yet the company was supportive about its release

I worked on the custom engine of Clumsy Ninja and Dawn of Titans

Merged the OpenGL 2 new_renderer branch (6e8070f3, 🗓️ Aug)

Added algorithms for containers and refactored iterators

Shaders can be embedded in the source as char arrays generated by CMake (🗓️ Dec)

15 / 77

 /dev/games/2025

https://github.com/nCine/nCine/commit/6e8070f3
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2015 - OpenGL 2 Renderer
Moved away from fixed pipeline

Added vector, matrix, and quaternion classes

Added more OpenGL wrappers (buffer objects, FBOs, render buffers, shader programs, textures)

Introduced classes to handle shader attributes and uniforms (cached in a new hashmap container)

Implemented a general render command with new material and geometry classes

Binding the geometry and material before issuing the draw call (src/graphics/RenderCommand.cpp 🔗)

1 void RenderCommand::issue()

2 {

3 geometry_.bind();

4

5 material_.bind();

6 setTransformation();

7 material_.commitUniforms();

8 material_.defineVertexPointers(geometry_.vboHandle());

9

10 draw();

11 }

16 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/src/graphics/RenderCommand.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2016 - Slightly More Public
Created the GitHub organization, the website, and the Discord server (🗓️ Jun)

Initially distributing the library as a binary on GDrive 😄

Fahien was the first to jump on board with ncRogue

Added support for MinGW/MSYS2 (🗓️ Mar)

ncPong is the first official nCine project, a Pong clone (🗓️ May)

CMake scripts to build dependency libraries for all platforms (🗓️ May)

nCine-libraries , nCine-android-libraries repositories

The in-game editor for ncRogue, an RPG prototype for Android

Old nCine logo

17 / 77

 /dev/games/2025

https://github.com/nCine/
https://github.com/nCine/nCine-libraries/
https://github.com/nCine/nCine-android-libraries/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2016 - ncPong
The repository contains both a C++ and a Lua version

ncPong, a minimal example game

18 / 77

 /dev/games/2025

https://github.com/nCine/ncPong/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2017 - A Leap Into The Snow ☃️
I moved to Stockholm to work as a Rendering Engineer for Frostbite 🇸🇪 (🗓️ Mar)

To an interview question, I replied: "I don’t know how STL handles it, but in my framework…" 😎

Shortly after, I was ready to release the sources, but contract restrictions prevented it

Kept sharing binary builds with friends on Discord as a fallback

Credited in multiple EA titles, including FIFA 18-20, Battlefront II, Battlefield V, and Anthem

Published the first "nCine Dev Update" article on my blog 📰 (🗓️ Aug)

Dropped support for SDL1 in favour of SDL2 (also dropped SDL_image)

Automatic culling of out-of-screen sprites (🗓️ Jun)

Parsing of SDL2 gamepad axes and buttons mapping database for all backends

Out of the box support for a lot of "Xbox style" gamepads

19 / 77

 /dev/games/2025

https://encelo.github.io/tags/#nCine
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2018 - Catching up With the Times
Atomic counters on all platforms (🗓️ Jan)

Merged the c++11 branch (df69bde1, 🗓️ Feb)

The birth of the nCine Template Library (nCTL)

Merged the OpenGL 3.3 new_renderer2 branch (b68f2de1, 📰 Dev Update 4, 🗓️ Jun)

Added Lua bindings to support scripting (🗓️ Aug - Sep)

Worked on SSE and NEON intrinsics for SIMD (unmerged simd , 📰 Dev Update 6, 🗓️ Nov)

apptest_simdbench Snippet from ncpong.lua , the Lua version of the example game

20 / 77

 /dev/games/2025

https://github.com/nCine/nCine/commit/df69bde1
https://github.com/nCine/nCine/commit/b68f2de1
https://encelo.github.io/2018-08-06-ncine-dev-update-4/
https://encelo.github.io/2018-12-16-ncine-dev-update-6/
https://github.com/nCine/nCine/blob/master/tests/apptest_simdbench.cpp
https://github.com/nCine/ncPong/blob/master/ncpong.lua
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2018 - Atomic Counters
Using compiler intrinsics to atomically update an integer value

Load, store, exchange, compare and exchange, test and set, fetch add/sub, …

Enable lock-free data structures like the work stealing job queue (💊 Job System)

📜 Reference: Preshing on Programming

We are trying to write t + 1 to top_ , but only if no thread has modified it in the meantime.

We expect its value to be t ; should it be different, we return a nullptr (src/threading/JobQueue.cpp 🔗).

1 const int32_t t = top_; // nctl::Atomic32 top_;
2

3 // ...

4 if (top_.cmpExchange(t + 1, t) == false)
5 {

6 // a concurrent steal or pop operation removed an element from the deque in the meantime.

7 return nullptr;

8 }

21 / 77

 /dev/games/2025

https://preshing.com/
https://github.com/nCine/nCine/blob/master/src/threading/JobQueue.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2018 - C++11 Subset in nCine
Replace NULL with nullptr

Mark disabled special member functions explicitly with =delete

Adopt the override specifier

Use delegating constructors to remove initialization functions

Convert most enumerations to enum class

Replace typedef s with type alias declarations (using)

Introduce range-based loops in a few places (for (IAudioPlayer *player : pausedPlayers_))

Use auto sparingly with iterators

Add support for move semantics in containers 💪

Replace almost all raw pointers with smart pointers 🤓

22 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2018 - OpenGL 3.3 Renderer (1/2)
Update to OpenGL 3.3 Core Profile and OpenGL ES 3.0

KHR_debug extension (glDebugMessageCallback() , glPushDebugGroup() , glObjectLabel())

Vertex Array Objects (VAO) pool to efficiently switch VBOs and vertex formats with a single bind

Uniform Buffer Objects (UBO) to supply arbitrary data to multiple shaders at once

Immutable texture storage to skip per-draw texture checks (glTexStorage2D())

Rewrite the batcher to work with rendering commands (degenerate vertices, patched indices)

Add a RenderBufferManager to use a single VBO, IBO, and UBO for all scene data

GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | GL_MAP_FLUSH_EXPLICIT_BIT

📜 Reference: Buffer Object Streaming OpenGL Wiki page

Add mesh sprites with custom vertices and UV coordinates

Split condition for a batch of render commands.

Sort key encodes layer information in the upper 32 bits, and textures, shaders, and blending data in the lower 32 bits.

From src/graphics/RenderBatcher.cpp 🔗

1 // Should split if the lower part of a material's sort key or the primitive type differ

2 const bool shouldSplit = command->lowerMaterialSortKey() != prevCommand->lowerMaterialSortKey() ||
3 prevPrimitive != primitive;

23 / 77

 /dev/games/2025

https://www.khronos.org/opengl/wiki/Buffer_Object_Streaming
https://github.com/nCine/nCine/blob/master/src/graphics/RenderBatcher.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2018 - OpenGL 3.3 Renderer (2/2)

24 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2018 - RenderDoc and the New Renderer

RenderDoc showing a deformed mesh sprite from apptest_meshdeform RenderDoc showing degenerate vertices from apptest_sinescroller

25 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/tests/apptest_meshdeform.cpp
https://github.com/nCine/nCine/blob/master/tests/apptest_sinescroller.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2018 - The Birth of nCTL
A template library with containers, iterators, algorithms, and more (fc96c897)

Using GoogleTest for unit testing

Using Gcovr for code coverage

Tests are taking a large portion of nCine codebase, but coverage results are decent

Using Google Benchmark support library

nCTL vs STL: now I’m sure my library is both correct and fast 🚀

A unit test code coverage report by Gcovr Google Test integration and support by the Qt Creator IDE

26 / 77

 /dev/games/2025

https://github.com/nCine/nCine/commit/fc96c897
https://github.com/google/googletest
https://gcovr.com/
https://github.com/google/benchmark
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2018 - nCine Template Library (1/3)
Arrays, atomics, hash functions, hashmaps, hashsets, lists, unique/shared pointers, sparse sets, strings

Most components are unit tested and benchmarked against the STL

Containers support custom allocators and stack allocation, iterators support templated algorithms

Uses C++ generic programming techniques like type traits, tag dispatching, and SFINAE

SFINAE stands for "Substitution Failure Is Not An Error"

SFINAE disables invalid templates instantiations instead of triggering compile-time errors

No STL, everything is built from scratch, sometimes requiring compiler intrinsics.

destructArray() uses SFINAE to specialize behavior based on type traits (before C++20 concepts).

From include/nctl/type_traits.h 🔗

1 template <class T>

2 struct isTriviallyConstructible

3 {

4 static constexpr bool value = __is_trivially_constructible(T);
5 };

6

7 template <class T>

8 void destructArray(T *ptr, unsigned int numElements)
9 {

10 detail::destructHelpers<isTriviallyDestructible<T>::value>::destructArray(ptr, numElements);
11 }

27 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/include/nctl/type_traits.h
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2018 - nCine Template Library (2/3)

Before deallocating memory, array elements are destroyed using destructArray() .

Thanks to SFINAE, destruction is skipped for trivially destructible types.

From include/nctl/Array.h 🔗

A common misconception: move() simply casts an lvalue to an xvalue.

From include/nctl/utility.h 🔗

1 template <class T>

2 Array<T>::~Array()
3 {

4 destructArray(array_, size_);
5 #if !NCINE_WITH_ALLOCATORS
6 ::operator delete(array_);
7 #else

8 alloc_.deallocate(array_);

9 #endif

10 }

1 /// It is used to indicate that an object may be "moved from"

2 template <class T>

3 inline typename removeReference<T>::type &&move(T &&arg)
4 {

5 return static_cast<typename removeReference<T>::type &&>(arg);
6 }

28 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/include/nctl/Array.h
https://github.com/nCine/nCine/blob/master/include/nctl/utility.h
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2018 - nCine Template Library (3/3)

Tag dispatching uses function overloading to choose the best implementation based on iterator type at compile time.

From include/nctl/iterator.h 🔗

1 /// Returns the distance between two random access iterators with a pointer subtraction

2 template <class RandomAccessIterator>

3 inline int distance(RandomAccessIterator &first, const RandomAccessIterator &last, RandomAccessIteratorTag)
4 {

5 return last - first;
6 }

7

8 /// Returns the distance in number of increments between two forward iterators

9 template <class ForwardIterator>

10 inline int distance(ForwardIterator &first, const ForwardIterator &last, ForwardIteratorTag)
11 {

12 int counter = 0;
13 for (; first != last; ++first)
14 counter++;
15

16 return counter;
17 }

29 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/include/nctl/iterator.h
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2018 - Instrumentation and UI Integration
Small String Optimization for the string class (🗓️ Feb)

Integration with Dear ImGui, an immediate mode GUI toolkit (aff7e611, 🗓️ Aug)

Add a debug overlay interface made with ImGui

Integration with the Tracy frame profiler (c8338ace, 🗓️ Dec)

ncParticleEditor , an ImGui editor for particle systems and emitters

A performance capture analysed by the Tracy frame profiler The Debug Overlay interface

30 / 77

 /dev/games/2025

https://github.com/ocornut/imgui
https://github.com/nCine/nCine/commit/aff7e611
https://github.com/wolfpld/tracy
https://github.com/nCine/nCine/commit/c8338ace
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2018 - ncParticleEditor
Developed alongside an artist for real-world feedback

Integrated CrashRpt on Windows to receive crash mini-dumps

Now transitioning to Google Crashpad, as CrashRpt is no longer maintained

ncParticleEditor showing a project by Helba

31 / 77

 /dev/games/2025

https://crashrpt.sourceforge.net/
https://crashpad.chromium.org/
https://github.com/nCine/ncParticleEditor/
https://www.artstation.com/helba
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2018 - Small String Optimization
Short strings stored inside the string object, avoiding heap allocation

Buffer size chosen to fit the whole string object in one CPU cache line

Since CPUs load full cache lines, accessing short strings is essentially free

Larger strings trigger heap allocation and copying

SSO, a common optimization also found in std::string (src/base/String.cpp 🔗)

1 class String

2 {

3 // ...

4 private:
5 static const unsigned int SmallBufferSize = 16;
6

7 union Buffer
8 {

9 char *begin_;
10 char local_[SmallBufferSize];
11 };

12

13 Buffer array_;
14 unsigned int length_;
15 unsigned int capacity_;
16 };

32 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/src/base/String.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2019 - nCine Goes Open Source
I left Sweden and EA behind for Granada in Spain 🇪🇸 (🗓️ Feb)

I could finally release the nCine on GitHub! (🗓️ Jun)

Featured on Phoronix and GameFromScratch.com

Using Azure Pipelines for Continuous Integration ✅ (📰 Dev Update 10, 🗓️ May)

Some experiments with ECS (unmerged ecs , 🗓️ Mar)

Porting to Emscripten for web support (📰 Dev Update 11)

Integration with the RenderDoc GFX debugger and the Nuklear immediate GUI

New hashmap with open addressing and probing (98f2364d, 🗓️ Jan)

Integration with the RenderDoc API apptest_gui , Nuklear and ImGui at the same time

33 / 77

 /dev/games/2025

https://www.phoronix.com/news/nCine-Game-Engine
https://gamefromscratch.com/ncine-2d-open-source-game-engine/
https://encelo.github.io/2019-07-03-ncine-dev-update-10/
https://encelo.github.io/2019-07-16-ncine-dev-update-11/
https://renderdoc.org/
https://github.com/Immediate-Mode-UI/Nuklear
https://github.com/nCine/nCine/commit/98f2364d
https://github.com/nCine/nCine/blob/master/tests/apptest_gui.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2019 - Broadening the Ecosystem
ncIsometric , a prototype isometric turn-based game that was never released (🗓️ Apr)

ncInvaders , my Space Invaders clone with some data-oriented design (🗓️ Jul)

ncTemplate , a template CMake project to clone and use as a starting point (🗓️ Jul)

ncTracer , a CPU path-tracer with multi-threading and an ImGui interface (🗓️ Aug)

ncline , a command line tool to download and compile dependencies, nCine, and projects (🗓️ Sep)

Collaboration with Jugilus begins for the JugiMap integration (🗓️ Nov)

Sprite enhancements: non-uniform scaling, anchor points, blending factors (📰 Dev Update 13)

The collaboration continues to this day 🫶

apptest_anchor , showing sprites rotating around their anchor points

34 / 77

 /dev/games/2025

https://encelo.github.io/2019-12-24-ncine-dev-update-13/
https://github.com/nCine/nCine/blob/master/tests/apptest_anchor.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2019 - ncInvaders
A simplified Space Invaders clone with some Data Oriented Design principles

I adapted part of the code I wrote for the Frostbite technical assignment 😉

ncInvaders, a simplified Space Invaders clone

35 / 77

 /dev/games/2025

https://github.com/nCine/ncInvaders
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2019 - ncIsometric
Unreleased game prototype made in Spain while unemployed

A temporary ImGui interface, A* pathfinding, an incomplete utility AI for enemies, and Blender graphics

ncIsometric, an isometric turn-based combat prototype

36 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2019 - ncline
Works on all supported desktop platforms leveraging Git and CMake

Can download sources or artifacts, then compile dependencies, the nCine, and your project

Inspired by a similar tool we had in Frostbite

ncline, the nCine command line tool

37 / 77

 /dev/games/2025

https://github.com/nCine/ncline
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2019 - ncTracer
Simple CPU-only multi-threaded path tracer using my pmTracer library as backend

Links nCine statically to bypass symbol visibility and access threads and OpenGL directly

📜 Reference: Ray Tracing from the Ground Up

The classic Cornell box scene as rendered by ncTracer

38 / 77

 /dev/games/2025

https://github.com/encelo/pmTracer
https://web.archive.org/web/20210506181127/http://www.raytracegroundup.com/
https://github.com/encelo/ncTracer
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2019 - JugiMap Framework and Projects
One day, a user wrote me a pretty long list of feature requests on Discord 📝

He was developing a map editor with Qt 5

The tool included a runtime to load maps in various 2D engines (Cocos2d-x, AGK-tier 2, SFML)

His demos really put the nCine under stress 🥵

I fixed a lot of bugs and added all the requested features 💪

The nCine was the fastest supported engine and was chosen for the web demos on the site

ncJugiMapFrameworkDemo ncJugiMapParallaxScrolling ncJugiMapSpriteTimelineAnimation ncJugiMapGuiDemo

39 / 77

 /dev/games/2025

https://github.com/nCine/ncJugiMapFrameworkDemo
https://github.com/nCine/ncJugiMapParallaxScrolling
https://github.com/nCine/ncJugiMapSpriteTimelineAnimation
https://github.com/nCine/ncJugiMapGuiDemo
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2019 - Leapfrog Probing for Hashmaps (1/2)
There are two main strategies for key collision resolution

Separate Chaining: entries with the same array/bucket index are stored in a linked list

Performance declines as the load factor grows, but there is no limit on the number of entries

Cache inefficiencies due to poor space-locality of lists

Open Addressing: entries are all stored directly into the array, with a probe sequence for collision

They require rehashing into a larger array as the load factor approaches 1

More cache-friendly as all entries are stored sequentially in the array

More information and performance results in Dev Update 7 📰

Key 0

Key 1

Key 2

Key 3

00

01

02

03

04

Key 1 Value 1

Key 0 Value 0

Key 2 Value 2

Key 3 Value 3

Separate Chaining

Key 0

Key 1

Key 2

Key 3

00

01

02

03

04

Key 1 Value 1

Key 3 Value 3

Key 0 Value 0

Key 2 Value 2

Open Addressing with Linear Probing

40 / 77

 /dev/games/2025

https://en.wikipedia.org/wiki/Hash_table#Collision_resolution
https://encelo.github.io/2019-01-08-ncine-dev-update-7/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2019 - Leapfrog Probing for Hashmaps (2/2)
A collision resolution probing strategy, using two additional delta values per array cell

1. Hash the key and compute the bucket index. That’s the ideal index, which we check first

2. If the item is not found, add that cell’s first delta value to determine the next cell index to check

3. If the item is not found, use the second delta value for all subsequent cells

4. Stop when the delta is zero, marking the end of the probe chain

📜 Reference: Preshing’s article

Insertions

Key 0

Key 1

Key 2

Key 3

Buckets

00

01

02

03

04

Deltas

3 0

0 0

0 0

0 0

0 0

Key/Value

Key 1 Value 1

Key 0 Value 0

Key 2 Value 2

Key 3 Value 3

Open Addressing with Leapfrog Probing

41 / 77

 /dev/games/2025

https://preshing.com/20160314/leapfrog-probing/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2020 - A Token of Support 💲
Added the Qt 5 backend on desktop (📰 Dev Update 14)

Added a filesystem class (POSIX and WinAPI implementations) (1a82d94a, 🗓️ Mar)

Added support for UTF-8 decoding in strings, enabling proper display of non-ASCII characters

Thinking about building an editor… 🤔 (#1)

Don’t FATAL_ASSERT if a resource (texture, font, audio buffer) can’t be loaded

Allow sprites with no textures, text nodes with no fonts, audio players with no buffers

Add support for custom memory allocators (defb333a, 📰 Dev Update 15, 🗓️ Apr)

Migrated from Azure to GitHub Actions for C.I. (c370ad59, 🗓️ Nov)

Didn’t get an Epic MegaGrant (🗓️ May), got 250$ for the Icculus Microgrant 2020 (🗓️ Dec)

apptest_filebrowser

apptest_font rendering the first line of the Iliad, thanks to UTF-8 support

An entry in the nCine GitHub Actions workflow runs page

42 / 77

 /dev/games/2025

https://encelo.github.io/2020-07-14-ncine-dev-update-14/
https://github.com/nCine/nCine/commit/1a82d94a
https://github.com/nCine/nCine/commit/defb333a
https://encelo.github.io/2020-07-14-ncine-dev-update-15/
https://github.com/nCine/nCine/commit/c370ad59
https://icculus.org/microgrant/2020/
https://github.com/nCine/nCine/blob/master/tests/apptest_filebrowser.cpp
https://github.com/nCine/nCine/blob/master/tests/apptest_font.cpp
https://github.com/nCine/nCine/actions
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2020 - SpookyGhost
I tried selling a tool for artists on itch.io, but it didn’t gain traction

It’s now free and open-source on GitHub, with optional donations still available

SpookyGhost, a procedural animation tool for 2D sprites

Laundry animation

Tree animation

43 / 77

 /dev/games/2025

https://encelo.itch.io/spookyghost
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2020 - ncJump
Started in December by Fahien, to demonstrate what nCine could do

Uses Box2D for physics and Dear ImGui for on the fly editing

Among the first nCine projects successfully tested on the Steam Deck

ncJump, a jumping project powered by nCine 🦘

ncJump running on my Steam Deck

44 / 77

 /dev/games/2025

https://www.antoniocaggiano.eu/
https://www.youtube.com/watch?v=ZKdDtJiIUdo
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2020 - Allocators Application Test
Visually demonstrates allocator behavior using ImGui low-level widget API

A similar table with recorded allocations can also be seen in the debug overlay

apptest_allocators allows testing all the operations supported by every allocator type

45 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/tests/apptest_allocators.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2020 - Continuous Integration
One YAML script per supported platform in .github/workflows/

Projects upload a build artifact in the projectName-artifacts repository

This special repository has a branch per platform/compiler combination

The nCine workflow also builds and uploads the documentations (C++ and Lua)

The matrix of reproducible build combinations is impossible to manually test

Platform

Linux

Windows

MinGW

macOS 13

macOS 14

Android v7a

Android v8a

Android x86_64

Emscripten

Compiler

GCC

Clang

Visual Studio 2019

Visual Studio 2022

GCC

Clang

Apple Clang

Apple Clang

Clang

Clang

Clang

Clang

Build

Release

Debug

DevDist

LuaDist

The combinations matrix All the branches of the ncPong-artifacts repository

46 / 77

 /dev/games/2025

https://github.com/nCine/ncPong-artifacts/branches/all
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2020 - Custom Allocators (1/3)
The IAllocator interface declares functions for allocation, deallocation, and reallocation

Shrinking or expanding memory blocks via reallocate() can be faster on some allocators

Main allocator types implemented:

Linear: only allocates new blocks, releases all at once

Stack: deallocates only in reverse order (last allocated first)

Pool: allocates fixed-size blocks, uses a free list for arbitrary deallocation

Free List: allocates and deallocates arbitrarily, can defragment adjacent free blocks

Many libraries support custom allocators (e.g., SDL2, GLFW, Lua, ImGui, Nuklear, Vulkan)

📜 Reference: Tiago Sousa’s article

Compiler-specific tricks to ensure correct initialization order of global objects

1 #ifdef _MSC_VER

2 #pragma init_seg(".CRT$XCT")

3 #else

4 static AllocManagerInitializer allocManagerInit __attribute__((init_priority(101)));
5 #endif

47 / 77

 /dev/games/2025

https://gamedev.net/tutorials/programming/general-and-gameplay-programming/c-custom-memory-allocation-r3010/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2020 - Custom Allocators (2/3)
It is possible to override the new / new[] and delete / delete[] operators

This way all process allocations will go through the custom allocator

Custom new and delete operators Custom new[] and delete[] operators

1 #ifdef OVERRIDE_NEW

2 void *operator new(std::size_t count)
3 {

4 if (count == 0)
5 return nullptr;

6

7 return nctl::theDefaultAllocator().allocate(count);

8 }

9

10 void operator delete(void *ptr) noexcept
11 {

12 if (ptr != nullptr)
13 nctl::theDefaultAllocator().deallocate(ptr);

14 }

15 #endif

1 #ifdef OVERRIDE_NEW

2 void *operator new[](size_t count)
3 {

4 if (count == 0)
5 return nullptr;

6

7 return nctl::theDefaultAllocator().allocate(count);

8 }

9

10 void operator delete[](void *ptr) noexcept
11 {

12 if (ptr != nullptr)
13 nctl::theDefaultAllocator().deallocate(ptr);

14 }

15 #endif

48 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2020 - Custom Allocators (3/3)
Using placement new to construct a FreeListAllocator inside a preallocated buffer

We can’t heap-allocate the allocator itself if we want all allocations to go through it 🔄

One of the rare cases in C++ where the destructor must be called manually

Placement new in action (src/base/AllocManager.cpp 🔗)

1 #define FREELIST_BUFFER (16777216) // 16 MB

2

3 static const unsigned int FreeListSize = FREELIST_BUFFER;
4 alignas(IAllocator::DefaultAlignment) static uint8_t freelistMemory[FreeListSize];
5 alignas(IAllocator::DefaultAlignment) static uint8_t freelistAllocatorBuffer[sizeof(FreeListAllocator)];
6 static FreeListAllocator &freelistAllocator = reinterpret_cast<FreeListAllocator &>(freelistAllocatorBuffer);
7

8 AllocManager::AllocManager()

9 {

10 // ...

11 new (&freelistAllocator) FreeListAllocator("Default", FreeListSize, freelistMemory); // placement new
12 }

13

14 AllocManager::~AllocManager()
15 {

16 // ...

17 (&freelistAllocator)->~FreeListAllocator(); // explicit call of the class destructor
18 }

49 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/src/base/AllocManager.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2021 - Working From Home 🏠
I joined The Multiplayer Group remotely as a Senior Rendering Engineer

They had no issues with me continuing my open-source contributions

I have worked on the Creation Engine 2 for Starfield

I wrote a retrospective article about the first ten years and got interviewed in a podcast

I bought a Raspberry Pi 4B and fixed minor build issues (also, SpookyGhost got some attention)

Some parts of the site were moved to the GitHub Wiki

Thinking about building an editor… 🤔 (#2)

Catch Lua errors with protected calls (📰 Dev Update 17)

CMake project files moved inside the nCine distribution

Lua oriented binary distribution (8ad63ad4, 🗓️ Jul)

My Raspberry Pi 4B 8GB, inside and Argon One M.2

50 / 77

 /dev/games/2025

https://encelo.github.io/2021-06-21-ten-years-ncine/
https://runtimepodcast.com/#5
https://www.tomshardware.com/news/spookyghost-comes-to-raspberry-pi
https://encelo.github.io/2021-06-28-ncine-dev-update-17/
https://github.com/nCine/nCine/commit/8ad63ad4
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2021 - ncTiledViewer
Creating a custom editor from scratch is a lot of work…

Started by simply showing how to load a map from the Tiled editor

Added chroma key support for texture loading in nCine, required by some levels

ncTiledViewer, a Tiled TMX map format viewer (using PugiXML)

Fuchsia as the transparent color

51 / 77

 /dev/games/2025

https://github.com/nCine/ncTiledViewer/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2021 - CMake Scripts (1/2)
More than 3600 lines of scripts in nCine/cmake/

Declare the list of public/private headers and sources

Expose a thorough set of compilation options to the user

Find the required and optional dependency libraries

Add compile definitions for optional features

Download ImGui, Nuklear, Tracy, GTest, and GBenchmark sources

Build the library, apptests, unit tests, benchmarks, and documentation

Build compressed archives, NSIS Windows installers, macOS bundles, Android APKs

More than 1600 lines of scripts in nCine/project/cmake

Try to find the nCine library based on the nCine_DIR user variable

The user can customize some NCPROJECT_ variables and some CMake callbacks

Example of CMake invocation to build the ncPong example game

1 encelo@zephyrus ~/nCine $ cmake -S ncPong -B ncPong-build -D nCine_DIR=$PWD/nCine-build -D CMAKE_BUILD_TYPE=Debug
2 -- The C compiler identification is GNU 15.1.1

3 -- The CXX compiler identification is GNU 15.1.1

4 ...

52 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2021 - CMake Scripts (2/2)

The CMakeLists.txt script from the ncTemplate project

1 set(NCPROJECT_NAME "ncTemplate")
2 set(NCPROJECT_EXE_NAME "nctemplate")
3 set(NCPROJECT_VENDOR "Angelo Theodorou")
4 set(NCPROJECT_COPYRIGHT "Copyright ©2019-2021 ${NCPROJECT_VENDOR}")
5 set(NCPROJECT_DESCRIPTION "A template project for applications and games made with the nCine")
6 set(NCPROJECT_HOMEPAGE "https://ncine.github.io")
7 set(NCPROJECT_REVERSE_DNS "io.github.ncine.nctemplate")
8

9 set(NCPROJECT_INCLUDE_DIRS include)
10

11 set(NCPROJECT_SOURCES

12 include/main.h

13 src/main.cpp
14)

15

16 # Don't edit beyond this line

17

18 # ...

19 # This part of the script is the same for all the projects and allows

20 # the scripts in `nCine/project/cmake` to perform their job.

21 # ...

53 / 77

 /dev/games/2025

https://github.com/nCine/ncTemplate/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2022 - Split Screen and Post-processing
Most of this year was spent on making advanced 2D graphics possible

Think of custom engine indie games like Pathway from Robotality or Eastward by Pixpil

Merged the viewports branch (2fb00a58, 🗓️ Nov 2021 - Jan)

Added dirty bits to skip transformation and AABB regeneration (using nctl::BitSet)

Merged the custom_shaders branch (4c306c80, 📰 Dev Update 19, 🗓️ Feb - Aug)

DeathKiller ported his C# Jazz Jackrabbit 2 reimplementation to C++ with nCine (🗓️ Jul)

Merged the hidpi branch (1874b56e, 🗓️ Sep - Dec)

Support for multiple monitors querying and windows scaling

Each desktop backend implements its own version of this new API

54 / 77

 /dev/games/2025

https://github.com/nCine/nCine/commit/2fb00a58
https://github.com/nCine/nCine/commit/4c306c80
https://encelo.github.io/2022-09-07-ncine-dev-update-19/
https://github.com/nCine/nCine/commit/1874b56e
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2022 - Jazz² Resurrection
Based on a custom fork of the nCine

The author provides me with feedback about the general nCine architecture

Jazz² Resurrection, an open-source reimplementation of Jazz Jackrabbit 2, the 1998 game by Epic MegaGames

55 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2022 - Viewports Application Test

apptest_viewports showing different viewport, scene, and camera setups

56 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/tests/apptest_viewports.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2022 - Custom Shaders Application Test

apptest_shaders showing normal mapping and bloom while preserving automatic batching

57 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/tests/apptest_shaders.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2022 - Viewports
Can change camera matrices and OpenGL scissor/viewport rectangles (useful for split screen)

Can write to the screen or to one or more FBOs supporting Multiple Render Targets

Can be chained together for multi-pass techniques

apptest_shader shows a blur made with a custom shader and a ping-pong technnique

The onDrawViewport() callback can be used to change shader parameters on ping-pong passes

0..4 0..1 0..1

Viewport

-Texture *textures_[4]

-SceneNode *rootNode_

-Camera *camera_

#draw()

Texture SceneNode Camera ScreenViewport

Viewport class associations

Pass Viewport Input Shader Output

#1 Scene Scene Root Node Default Ping Texture

#2 Ping Ping Sprite Blur V Pong Texture

#3 Pong Pong Sprite Blur H Ping Texture

#4 Ping Ping Sprite Blur V Pong Texture

#5 Pong Pong Sprite Blur H Ping Texture

#6 Screen Ping Sprite Default Screen

Multi-pass blur input/output table

Next

Next

onDrawViewport()

Next

Drawn by

Writes to

Writes to

Writes to Used by

Used by

Drawn by

Drawn by

🪟 Scene Viewport

🪟 Ping Viewport

✨ Blur Shader

🪟 Pong Viewport

✨ Blur Shader

� Screen Viewport

🪾 Scene Root Node
👻 Ping Sprite

👻 Pong Sprite

🖼️ Ping Texture

🖼️ Pong Texture

Multi-pass blur flowchart

58 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2022 - Custom Shaders
Users can load GLSL shaders from source (including for batching)

Shaders can be assigned to multiple nodes via shader states

Shader states feed node-specific data to the shader during rendering

They can work in tandem with viewports for post-processing effects

The Shader class wraps an OpenGL shader program

Supports GLSL introspection of uniform variables

Users can replace just the fragment shader and use a built-in vertex shader, or vice versa

0..1

0..1

ShaderState

+setNode(DrawableNode *node)

+setShader(Shader *shader)

+setUniformInt()

+setUniformFloat()

Shader

+loadFromMemory()

+loadFromFile()

+isLinked()

+retrieveInfoLog()

DrawableNode

Associations of shader related classes

apptest_shaders changing the separable direction uniform at each blur pass

1 void MyEventHandler::onDrawViewport(nc::Viewport &viewport)
2 {

3 // Dirtying the uniform cache value at each blur pass

4 if (&viewport == pingViewport_.get())
5 {

6 vpPingSpriteShaderState_->setUniformFloat(nullptr, "uDirection", 1.0f, 0.0f);

7 vpPongSpriteShaderState_->setUniformFloat(nullptr, "uDirection", 0.0f, 1.0f);

8 }

9 }

59 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2023 - Faster Shaders, Smoother Scripting
Added a Binary Shader Cache, requested by DeathKiller to improve Xbox performance

UWP uses ANGLE, which is slow at translating GLSL shaders to HLSL

Caching precompiled shaders saves time, avoiding ANGLE translation

More information in Dev Update 20 📰

Introduced alongside: double compilation of built-in batched shaders

First pass with BATCH_SIZE = 1 introspects UBO limits

Second pass uses optimal size and is saved to the binary cache

Ensures compatibility on devices with less than 64kb in UBOs

Published a Lua tutorial on the website (🗓️ Jan)

Yet another way to lower the entry barriers to use the framework

Easier hot-reloading of Lua scripts (🗓️ Apr)

60 / 77

 /dev/games/2025

https://encelo.github.io/2023-12-12-ncine-dev-update-20/
https://ncine.github.io/Lua_Tutorial.html
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2023 - Binary Shader Cache
Saves binaries in the fs::cachePath()/nCineShaderCache directory by default

%LocalAppData% on Windows, ~/Library/Caches/ on macOS, ~/.cache on Linux

A load request match requires the same platform hash, binary format, and shader hash name

The platform hash is calculated from the GL_RENDERER and GL_VERSION strings

Driver updates change the platform hash, invalidating the cache

The cache can prune outdated shaders automatically

uint64_t uint32_t uint64_t

platformHash binaryFormat shaderHashName

Key metadata for binary shader cache lookup

Binary Shader Cache section in the debug overlay interface

61 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2024 - GitHub Recognition
Presented in Granada about why custom engines matter (🗓️ Mar)

Published some "getting started" guides on the GitHub Wiki, to reach more users (🗓️ Mar)

Surpassed 1,000 stars on GitHub ⭐ (🗓️ Jun)

Merged the openal_efx branch (📰 Dev Update 21, 🗓️ May - Jun)

Started developing a multi-threaded job system (job_system , 🗓️ May - Jul)

nCine became an official addon for the LuaLS extension in VS Code (🗓️ Nov)

Offers autocomplete, type checking, and full API documentation in the IDE

Released a new LDoc documentation

Lua Language Server support in VS Code

One thousand stars and counting!

nCine among the addons of the LuaLS

62 / 77

 /dev/games/2025

https://encelo.github.io/CustomEnginesPresentation/
https://github.com/nCine/nCine/stargazers
https://encelo.github.io/2025-01-14-ncine-dev-update-21/
https://github.com/LuaLS/LLS-Addons/tree/main/addons/ncine
https://ncine.github.io/docs/lua_master/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2024 - Job System (🚧 WIP) (1/3)
One thread spawned per logic core at program start (thread pool)

Lock-free work stealing queues per thread for automatic load-balancing

Lock-free achieved with Compare-And-Swap operations on atomics

Parent/children relationship enables waiting on parent jobs

As soon as a job finishes, all of its continuations jobs run immediately

Built-in parallelFor(dataArray, 4096, &myDataFunc, nc::CountSplitter(128))

📜 Reference: Molecular Matters blog articles

The job system pillar: the Job structure (src/include/Job.h 🔗)

To avoid false sharing, it should occupy at least one cache line.

Main loop of a thread function (src/threading/JobSystem.cpp 🔗)

1 struct Job

2 {

3 JobFunction function;
4 Job *parent = nullptr;
5 nctl::Atomic32 unfinishedJobs;
6 char data[JobDataSize];
7 nctl::Atomic32 continuationCount;
8 Job *continuations[JobNumContinuations];
9 };

1 while (true)

2 {

3 while (!getJob(jobQueues) && shouldQuit == false)
4 {

5 queueMutex.lock();

6 queueCV.wait(queueMutex);

7 queueMutex.unlock();

8 }

9 if (shouldQuit) break;

10 execute(job, jobQueues);
11 }

⚠️
 GitHub links don't work as the

code has not been pushed yet. ⚠️

63 / 77

 /dev/games/2025

https://en.wikipedia.org/wiki/Thread_pool
https://en.wikipedia.org/wiki/Work_stealing
https://en.wikipedia.org/wiki/Non-blocking_algorithm
https://blog.molecular-matters.com/2015/08/24/job-system-2-0-lock-free-work-stealing-part-1-basics/
https://github.com/nCine/nCine/blob/master/src/include/Job.h
https://en.wikipedia.org/wiki/False_sharing
https://github.com/nCine/nCine/blob/master/src/threading/JobSystem.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2024 - Job System (🚧 WIP) (2/3)
Jobs can spawn other jobs, queued on the same thread’s queue (this is how parallelFor works)

The system is paired with a LogEntryQueue class for multi-threading logging

Using C++11 thread_local keyword for Thread Local Storage (TLS) (include/ncine/IJobSystem.h 🔗)

Finishing a job, signalling the parent, and running continuations (src/threading/JobSystem.cpp 🔗)

1 /// The thread id for each thread

2 static inline thread_local unsigned char threadId_;

1 void finish(Job *job, JobQueue *jobQueues)
2 {

3 const int32_t unfinishedJobs = --job->unfinishedJobs; // atomic decrement
4 if (unfinishedJobs == 0)
5 {

6 // Releasing the job back to the pool.

7 job->function = nullptr;

8 if (job->parent)

9 finish(job->parent, jobQueues);
10 // run follow-up jobs

11 for (int i = 0; i < job->continuationCount; i++)
12 jobQueues[JobSystem::threadId()].push(job->continuations[i]);

13 }

14 }

64 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/include/ncine/IJobSystem.h
https://github.com/nCine/nCine/blob/master/src/threading/JobSystem.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2024 - Job System (🚧 WIP) (3/3)

Users are not exposed to raw pointers. JobId is a numeric, opaque identifier.

When packed, it functions as a real handle encoding both the queue index (thread id) and the element index.

From: include/ncine/IJobSystem.h 🔗

1 // If set to 1, the `JobId` will be a 16bit integer that encodes the thread id (5 bits) and the pool index (11 bits)

2 // A packed id will limit the number of threads to 32, and the pool size to 2048.

3 // Set it to 0 to use a 64bit pointer and overcome those limits (less space in the `Job` struct for remaining fields).

4 #define PACKED_JOBID (0) // Experimental!

5

6 #include <cstdint>

7 #include "common_defines.h"

8

9 namespace ncine {

10

11 #if PACKED_JOBID

12 using JobId = uint16_t;
13 #else

14 using JobId = uintptr_t;
15 #endif

16 using JobFunction = void (*)(JobId, const void*);

65 / 77

 /dev/games/2025

https://en.wikipedia.org/wiki/Handle_(computing)
https://github.com/nCine/nCine/blob/master/include/ncine/IJobSystem.h
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2024 - Threads Captured in Tracy
The main thread and all worker threads are actively processing jobs in the execute() function

Jobs are initially queued on the main thread, then distributed across workers via work stealing

Tracy capture of apptest_jobsystem , showing jobs execution distributed among worker threads

66 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/tests/apptest_jobsystem.cpp
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2025 - Let’s Try Some Different Things
Industry layoffs finally hit me, currently job-free but time-rich ⏳ (🗓️ Mar)

I made an nCine game at the Global Game Jam (🗓️ Jan)

I also sponsored the event and gave away an nCine mug as a prize 🍺

Tried Google and Reddit advertisement with a very small budget

ChatGPT suggested I contact Valve for a collaboration (no reply 😅)

Updated GitHub README.md with documentation links and screenshots

Applied for conferences (Guadalindie in Malaga 👎, and /dev/games in Rome 👍)

Switched to introsort for RenderCommand sorting (🗓️ Jan)

The nCine mug prize My presentation card for /dev/games 2025

67 / 77

 /dev/games/2025

https://github.com/nCine/nCine/blob/master/README.md
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2025 - The GGJ 2025 in Granada

Invited on stage to award a prize, nCine is an official sponsor

68 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📸 2025 - Wet Paper
The GGJ game is still in development and will be a new showcase for users

With custom shaders, statistics, load/save settings in TOML format, joystick vibration

A dogfooding experience to make nCine better (remember the Blender Open Movies?) 🐶

Wet Paper with the custom refraction shader for bubbles

Refraction off/on (#1)

Refraction off/on (#2)

69 / 77

 /dev/games/2025

https://github.com/encelo/wetpaper
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2025 - Introspective Sort (1/2)
Introsort is a hybrid sorting algorithm (also used by std::sort)

Fast with very few elements (uses insertion sort below a threshold)

Fast on average, as it uses quicksort partitioning

Optimal worst-case performance (switches to heapsort when recursion is too deep)

The sort function calculates the maximum depth for quicksort

depth 0

depth 1 depth 2

depth 1 depth 2 depth 3 depth 4 depth 5 depth 6 depth 7 depth 8

Some pivot selections lead to unbalanced partitions, deep recursion, and a worst-case time complexity of O(n²)

1 template <class Iterator, class Compare>
2 inline void sort(Iterator first, Iterator last, Compare comp)
3 {

4 const unsigned int maxDepth = log(distance(first, last)) * 2;
5 introsort(first, last, comp, maxDepth);
6 }

70 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

💊 2025 - Introspective Sort (2/2)

Note that introsort is called recursively, switch conditions are checked per each quicksort partition

1 /// Introspective sort implementation with iterators and custom compare function

2 template <class Iterator, class Compare>
3 inline void introsort(Iterator first, Iterator last, Compare comp, unsigned int maxDepth)
4 {

5 const int size = distance(first, last);
6 if (size < 16)
7 insertionsort(first, last, comp);
8 else if (maxDepth == 0)
9 heapsort(first, last, comp);
10 else

11 {

12 Iterator p = prev(last);
13 swap(*next(first, size / 2), *p);
14 Iterator q = partition(first, p, comp);
15 swap(*q, *p);
16 introsort(first, q, comp, maxDepth - 1);
17 introsort(next(q), last, comp, maxDepth - 1);
18 }

19 }

Yes

No

Yes

No

Partition size < 16?

Use insertion sort

Reached max depth?

Use heapsort

Partition with quicksort

71 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🗓️ 2025 - What About AI? 🤖
Brainstormed game, business, and collaboration ideas

Assisted me in writing a quicksort unit test for nCine

Helped me proofread this presentation 👨‍🏫

Wrote bash and Python scripts to create charts about Git activity

Explained how to write custom CSS code for Slidev

Helped setup the refraction shader in 2D for Wet Paper

ChatGPT helping me understand introsort ChatGPT helping me with Slidev

72 / 77

 /dev/games/2025

https://sli.dev/
https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

📊 Some Git Statistics

Commits per Hour (yes, I'm a 🧛‍♂️)

Commits per Weekday
Commit Contributions Heatmap

Additions/Deletions Over Time Cumulative Codebase Histogram

73 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🚢 A Classic Sunk Cost Fallacy?
It might seem like I’m just refusing to let the ship sink…

I’ve spent so many years on this, I have to see it through!

If I stop now, it will all have been for nothing! 😭

But fortunately, that’s not the reality

I have poured in a lot of time, but I’ve also learned immensely and enjoyed the journey

It might never become my full-time job, and that’s fine

Just having more users and watching the project grow is already rewarding

74 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

🔮 Future Work
Finish incomplete tasks:

Complete the job system, then parallelize engine parts with Data Oriented Design

Test and finalize the CrashPad integration

Support more technologies:

Add a unified graphics layer supporting OpenGL, Vulkan, Metal, and WebGPU backends

Switch to SDL3 as the new default desktop backend

Port to iOS (requires Metal support first)

Explore new and ambitious projects:

Develop a C++ neural network library for games and experiments (NEAT and genetic algorithms)

Implement a raylib-compatible API on top of nCine to attract new users 🤯

Build a fully-fledged ImGui editor with a runtime scene "player" (like Unity/Godot)

Return to existing projects and to-do notes:

Revisit ncTracer for continuous learning and to stay sharp in graphics

Add new features to SpookyGhost: particles, timeline, batch processing

75 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

Any Questions?

Feel free to try it out and have fun tinkering! ⚗️
For any questions, reach me at: encelo@gmail.com 📧

No Yes

Did I understand

everything? 🤔

Ask a question 🙋 Lucky me! 🥳

mailto:encelo@gmail.com

💊 List of Technical Pills
Monotonic Clocks

OpenGL 2 Renderer

Atomic Counters

C++ 11

OpenGL 3.3 Renderer

nCine Template Library

Small String Optimization

Leapfrog Probing

Continuous Integration

Custom Allocators

CMake Scripts

Viewports

Custom Shaders

Binary Shader Cache

Job System

Introspective Sort

77 / 77

 /dev/games/2025

https://devgames.org/en/2025.html
https://devgames.org/en/2025.html

